3.527 \(\int \frac{\sec (c+d x)}{\sqrt{a+b \cos (c+d x)}} \, dx\)

Optimal. Leaf size=58 \[ \frac{2 \sqrt{\frac{a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{d \sqrt{a+b \cos (c+d x)}} \]

[Out]

(2*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*b)/(a + b)])/(d*Sqrt[a + b*Cos[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.126057, antiderivative size = 58, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.095, Rules used = {2807, 2805} \[ \frac{2 \sqrt{\frac{a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{d \sqrt{a+b \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]/Sqrt[a + b*Cos[c + d*x]],x]

[Out]

(2*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*b)/(a + b)])/(d*Sqrt[a + b*Cos[c + d*x]])

Rule 2807

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d*
Sin[e + f*x])/(c + d)]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rubi steps

\begin{align*} \int \frac{\sec (c+d x)}{\sqrt{a+b \cos (c+d x)}} \, dx &=\frac{\sqrt{\frac{a+b \cos (c+d x)}{a+b}} \int \frac{\sec (c+d x)}{\sqrt{\frac{a}{a+b}+\frac{b \cos (c+d x)}{a+b}}} \, dx}{\sqrt{a+b \cos (c+d x)}}\\ &=\frac{2 \sqrt{\frac{a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{d \sqrt{a+b \cos (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.0837801, size = 58, normalized size = 1. \[ \frac{2 \sqrt{\frac{a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{d \sqrt{a+b \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]/Sqrt[a + b*Cos[c + d*x]],x]

[Out]

(2*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*b)/(a + b)])/(d*Sqrt[a + b*Cos[c + d*x]])

________________________________________________________________________________________

Maple [A]  time = 3.099, size = 166, normalized size = 2.9 \begin{align*} 2\,{\frac{\sqrt{ \left ( 2\,b \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+a-b \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}}{\sqrt{-2\,b \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( a+b \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sin \left ( 1/2\,dx+c/2 \right ) \sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}b+a+b}d}\sqrt{{\frac{2\,b \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+a-b}{a-b}}}{\it EllipticPi} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,2,\sqrt{-2\,{\frac{b}{a-b}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)/(a+b*cos(d*x+c))^(1/2),x)

[Out]

2*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1
/2*c)^2+a-b)/(a-b))^(1/2)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+
1/2*c),2,(-2*b/(a-b))^(1/2))/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^2*b+a+b)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec \left (d x + c\right )}{\sqrt{b \cos \left (d x + c\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+b*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sec(d*x + c)/sqrt(b*cos(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+b*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec{\left (c + d x \right )}}{\sqrt{a + b \cos{\left (c + d x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+b*cos(d*x+c))**(1/2),x)

[Out]

Integral(sec(c + d*x)/sqrt(a + b*cos(c + d*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec \left (d x + c\right )}{\sqrt{b \cos \left (d x + c\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+b*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sec(d*x + c)/sqrt(b*cos(d*x + c) + a), x)